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SIMULATION OF TRANSONIC VISCOUS WING AND WING-FUSELAGE 

FLOWS USING ZONAL METHODS 

JOLEN FLORES* 

Abstract. -The thin-layer Navier-Stokes equations are coupled with a 

zonal scheme (or domain-decomposition method) to develop the Transonic Navier- 

Stokes (TNS) wing-alone code. TNS has a total of 4 zones and is extended to a 

total of 16 zones for the wing-fuselage version of the code. 

computed on the Cray X-MP-48 and compared with experimental data. 

Results are 

Key words. zonal methods, applied aerodynamics, computational fluid dynamics, 

transonic, viscous. 

Running head: Zonal-Method Simulation of Transonic Flows 

1. Introduction. With the improvement of numerical algorithms for the 

solution of the three-dimensional Euler/Navier-Stokes equations and the recent 

advancements in computer capabilities, previously unchallenged problems in 

computational fluid dynamics (CFD) are now being attempted. Some of the more 

recent transonic applications involving more sophistication in the geometries 

have appeared; they include Deiwert and Rothmund E91, Deiwert et al. [ l o ] ,  

Fujii and Kutler 1151, and Mansour [24]. 

conducted on coarse grids and required large amounts of cpu time, thereby 

precluding their use for more complicated geometries. 

However, even these solutions were 

*Research Scientist, NASA Ames Research Center, Moffett Field, California 
94035. 
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The next step in the advancement of CFD is in the simulation of transonic 

flow over complex geometries. However, generating a single grid in three 

dimensions for this simulation is one of the biggest pacing items in CFD. 

Currently, numerically generated grids in curvilinear coordinate systems are 

commonly used around arbitrary geometries. 

conditions is easier on body-fitted systems. 

complex, such as wing-body-strake or wing-canard combinations, the generation 

of a single grid becomes a very difficult task. Add to this the requirement 

of appropriate clustering of the grid points at all no-slip surfaces, and in 

regions of high gradient flow, and this task becomes nearly impossible. 

The implementation of the boundary 

As the geometry becomes more 

To help alleviate this problem, zonal approaches have become increasingly 

In the zonal approach, the flow field is partitioned into distinct popular. 

"zones," each of which is solved independently. 

base grid can be generated about the geometry in question. 

any subdomain can be generated easily. 

gradients such as shear layers, shock waves, jets, wakes, and vortices can 

also be easily generated. 

zones can be added to capture the pertinent flow about them. 

Using this approach, a coarse 

Then the grid for 

Refined zones for regions of high 

As more components are added to the geometry, more 

This zonal approach is not novel, having been used implicitly in the 

introduction of boundary-layer theory by Prandtl [25]. 

divided into an inner viscous region where the boundary-layer equations are 

solved and matched with an outer inviscid solution. Thus, using this zonal 

approach, the boundary-layer equations could be solved via a marching tech- 

nique while different relaxation methods are applied to the outer inviscid 

flow. 

the more consuming Navier-Stokes equations. 

Here the flow field is 

Most noncomplex general viscous flows can be simulated without using 
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The zonal approach has a number of advantages: (i) the difficulties in 

generating three-dimensional grids for different types of complex configura- 

tions can be reduced with the use of zonal methods; (ii) different types of 

grid topologies can be implemented where appropriate in order for the grids t o  

be mesh-efficient (that is, more points on the body surface where accuracy is 

desired, and fewer points in the flow field); (iii) different equations sets, 

with different algorithms, can be implemented in the various zones for compu- 

tational efficiency; and (iv) information for only one zone need reside in the 

computer core at any given time, thereby relaxing memory limitations. Even in 

turbulence modeling, the zonal approach can be applied as described by Kline 

et al. [21]. In short, there is a wide variety of situations in which zonal 

methods can be applied with substantial gain. 

I 1  

Figure 1 illustrates the two major types of zonal interfaces, patched and 

Earlier work in the development of a zonal-boundary scheme, for a overlapped. 

system of hyperbolic equations includes that of Cambier et al. [6J. 

work on patched grids using the Euler equations was done by Rai [3O], 

Hessenius and Pulliam [ 161, and Hessenius and Rai [ 171. 

concept was also used for the potential and full-potential equations by Lee 

et al. [22] and Yu [35]. 

Euler equations by Atta [l] and Atta and Vadyak [2]. 

results obtained on overlaid grids in conjunction with the stream-function 

approach. The current work uses the patched grid zoning method in a grid- 

refinement mode. 

Eriksson [ll] and Baker et al. [3]. It is also possible with the zonal 

approach to solve different types of equation sets in the different zones [8]. 

Further 

The patched grid 

The approach of overlapped grids was used with the 

Steger et al. [33]  give 

Other work using this grid refinement mode has been done by 

This paper discusses the computational approach in which the fast- 

convergent, Pulliam-Chaussee [28] diagonal algorithm is coupled with a zonal 
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approach. The new approach permits relatively inexpensive fine-grid solutions 

t o  be made of the Euler/Navier-Stokes equations, which is especially important 

for flows with shock/boundary-layer interaction. 

comparing numerical solutions with existing experimental data will also be 

presented. 

Validation of the code by 

2. Governing equations. The equations solved in this study are the 

Reynolds-averaged Navier-Stokes equations written in strong conservation-law 

form. 

imation for the viscous terms. 

in generalized curvilinear coordinates are 

These equations are simplified by using the standard thin-layer approx- 

The thin-layer Navier-Stokes equations written 

where 

A 1 Q = J- 

A A II A -1 A a-Q + a,E + a_F + a-G = Re acS , 
I 5 

A -1 , E = J  

puv + 
pvv + 

pwv + 

e + P  

1 

A 

c =  J- ' 
PW 

puw + 

pvw + 

p w w  + 

XP 

cZp 
) - 5  'tP 1 , 
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with 

u = Et + s x u +  5 Y v + 5 z w 

v = rlt + n x u +  9 Y v +  z w 
w = c  + r ; u + c v + c w  z t x  Y 

and 

Pressure is related to the conservative flow variables Q by the equa- 

tion of state 

The Beam-Warming algorithm [5] is used t o  solve the governing equations, 

1 1 1  1 

where A ,  B, C, and M are the Jacobian matrices aE/aQ, aF/aQ, aG/aQ, and 

aS/aQ, respectively. Note that M, which is derived from S, contains 
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derivatives in TI. For h = (112)  or 1, the integration is trapezoidal 

(second-order) or Euler implicit ( f irst-order) , respectively, in time. These 

equations are central-space-differenced and implicitly advanced in time. To 

maintain stability of the algorithm (because of the central-difference scheme 

used), an explicit fourth-order artificial-dissipation term is added to the 

flux calculations and an implicit second-order dissipation term is added to 

each of the block tridiagonals. The first working code used the above 

algorithm . 
For steady-state computations or first-order time-integrations, a diag- 

onal form of ( 2 )  can be used. In this case, the left and right eigenvector 

matrices of A, B, and C are used to diagonalize the one-dimensional opera- 
A A  n 

tors. The diagonal algorithm in three dimensions has the form 

( 3 )  

For a complete derivation of the diagonal algorithm (as well as definitions 

for N, P, etc.) see [28] .  
n n  

The main advantage of this form is the simplification of the matrix 

inversions from block-tridiagonal inversions to scalar-tridiagonal inver- 

sions. 

[28] .  

This simplification reduces the computational work by about 30% 

Also, the new scalar form for the inversion process allows the use of 

scalar-pentadiagonal solvers so that the added fourth-order explicit artifi- 

cial dissipation can be properly linearized and be made fully implicit. 

form enhances stability and convergence rates [ 2 6 , 2 9 ] .  

This 

To further enhance the 

convergence rate, a space-varying At has been used. It is given by the 

formula At = Ato/[l + ( J ) ” 2 ] ,  where Ato, as used here, is simply a constant 

used to decrease or increase At. For most cases, the default value of At, 
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was 5. 

ment of the viscous terms. The turbulence model used for all cases is the 

Baldwin-Lomax algebraic model [4]. 

In viscous calculations the diagonal algorithm uses an explicit treat- 

3. Zonal approach. To initiate the zonal approach, a coarse block 

(zone 1 )  is first generated about the configuration. The coarse block can be 

generated either iteratively, elliptic [32], or through a marching scheme, 

parabolic [12]. 

onality at the inner and outer boundaries. 

in both the spanwise and chordwise directions. 

Both procedures have the capabilities of spacing and orthog- 

The topology of the grid is H-type 

To generate the finer zones near the wing, a small zone of points about 

the wing is removed from grid 1. 

f r om z m e  1 is then cccupied by the finer grid (zone 2). 

by putting twice as many points in every spatial direction relative to 

zone 1. This task is accomplished by cubic-spline interpolation of the 

coarse-grid points to the fine-grid points. 

small zone of points is again removed about the wing from zone 2. Zones 3 

and 4 now occupy the area left vacant by the removal of points from zone 2. 

Zone 3 occupies the area above the wing and includes the upper surface of the 

wing, and zone 4 occupies the area below the wing and includes the lower 

surface of the wing. 

streamwise and spanwise direction as does zone 2; however, points are further 

clustered in the normal direction to capture viscous effects. All zones 

overlap at the zonal boundaries, usually by one or two grid planes. 

The space left open by the removal of points 

Zone 2 is generated 

To generate the viscous grids, a 

Zones 3 and 4 retain the same number of points in the 

Figure 2 shows a typical grid with outer boundary positions specified so 

as to coincide with the position of the wind-tunnel walls from the NASA Ames 

High Reynolds Number Channel I [23]. The grid is plotted in perspective so 
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that detail on the upper and lower wind-tunnel-wall surfaces, the inflow and 

outflow planes, and the wing-symmetry plane are all visible. This grid, which 

is generated directly by the parabolic grid-generation approach, becomes the 

outer, coarse-grid zone (grid 1 ) .  The grid detail near the wing/symmetry- 

plane juncture has been removed. The blowup of the grid in this region 

(Fig. 3 )  shows the detail of the grid zones 2 ,  3 ,  and 4. 

used in this case is composed of NACA 0012 cross sections, has a taper ratio 

of 1.0, a leading edge sweep of 2 0 ° ,  an aspect ratio of 3.0, and is rigged in 

the wind-tunnel-wall grid at an angle of attack of 2 O .  

have any twist or dihedral. 

wing surface (grid zones 3 and 4 )  is highly clustered in the normal direction 

and is, therefore, appropriate for a Navier-Stokes flow solver. Also note 

that the Navier-Stokes grid expands in thickness from the leading edge toward 

the trailing edge so as to better capture the growing boundary layer. 

The wing geometry 

This wing does not 

Note that the grid immediately adjacent to the 

Figure 4 illustrates the wing surface grid and a chordwise slice of 

zones 1, 2 ,  and 3 at the symmetry plane ( y  = 0). 

in zone 2 (in chordwise and normal directions) relative to zone 1. The dou- 

bling is also done in the spanwise directions, although this is not shown 

here. 

chordwise direction (also in the spanwise direction) between zones 2 and 3 ,  

and the clustering of grid cells in zone 3.  

surface, trailing-edge mesh, and wing-tip region. 

is essentially of the same structure as zone 3 .  

Note the doubling of points 

There can also be seen a one-to-one correspondence of points in the 

Also highlighted are the wing 

Zone 4 is not shown, but it 

For clarification, Fig. 5 shows a generic form of the overlapping proce- 

dure between two inviscid zones (this generic overlap procedure is the same 

between all zones, i n v i s c i d  or viscous). Boundary conditions are applied 

explicitly when using this overlapping procedure. That is, boundary 
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conditions for the zone 2, the 5 = A plane, are obtained by interpolating 

data from the interior points of zone 1. And, conversely, boundary conditions 

for the zone 1 ,  the c; = B plane, are obtained from the interior data from 

zone 2. 

series of one-dimensional interpolations. The interpolation process is auto- 

mated to the extent that only the two planes involved in the interpolation 

need to be defined, the base and target planes. Two interpolation schemes are 

coded: one is a cubic spline and the other is linear. The cubic spline is 

best in smooth regions of the flow, and the linear is best in the nonsmooth 

flow regions. The linear interpolation routine was used for the results pre- . 

sented herein. 

than one are used to update the boundary conditions of zone 1. 

Fig. 4, zones 1 and 2 are solved using the Euler equat.ions (inviscid zones), 

and the Navier-Stokes equations are used in the viscous zones (zones 3 and 4). 

The boundary conditions for a single surface are obtained with just a 

Figure 6 illustrates the possible arrangement when more zones 

Finally in 

4. Discussion of results. 

4.1. Transonic Navier-Stokes (TNS) wing-alone code. The first case 

tested consisted of a NACA 0012 wing, subject to the following flow condi- 

tions: 

8 million. 

that extends from zone 3 (viscous upper-surface zone) into zones 2 and 1 

(inviscid zones). 

150,000-point mesh, which for three dimensions is a relatively fine grid. 

Mm = 0.826, a = 2 O ,  and a Reynolds number, based on the chord, of 

This case, which is moderately difficult, involves a strong shock 

With the zonal approach, the test case was run on a 

For this case the wind-tunnel-wall effects are very significant. This 

effect can be seen in Fig. 7 where the pressure coefficient distributions from 

the TNS code, with and without the walls modeled, are compared with those of 
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experiment [23]. The shift in shock position caused by the tunnel walls is 

obvious. The shock position for the case with walls is in good agreement with 

the experimental shock position. 

General agreement between the wind-tunnel-wall case and experiment is 

better inboard of mid-semispan than it is outboard. In particular, the com- 

puted upper-surface shock strength at 

experiment. 

tion in the experimental results at this semispan location, which is not 

accurately reproduced by the computed results. 

tion is given in Figs. 8 and 9, 

(Fig. 8) and an oil-flow photograph taken from the experiment (Fig. 9). 

experimental separation is about twice as large as the computed separation. 

The spanwise extent of the experimental separation is reasonably predicted by 

the computation, but the streamwise extent is underpredicted. 

for this discrepancy are coarse-grid and turbulent-model effects, as well as 

the sensitivity of the flow pattern to changes in the free-stream Mach 

number. 

all comparison is quite encouraging. 

2y/b = 0.78 

This larger strength is caused by a large boundary-layer separa- 

is larger than that of the 

A good picture of this situa- 

which show a set of computed particle paths 

The 

Some reasons 

Despite the difference in the size of the separation zone, the over- 

Figure 10 shows Mach number contours plotted in a wing cross-sectional 

2y/b = 0.66; the zonal boundaries are high- plane at a semispan station of 

lighted. 

interface boundary. This demonstrates that this particular interface, between 

zones 2 and 3 ,  is implemented in a conservative manner. 

however, that not all interfaces are conservative.) Generally, most of the 

other contours cross the zonal interface boundaries in a smooth and continuous 

way. 

relatively coarse inviscid grid (see Fig. 3 ) ,  the wake abruptly stops. This 

Note the smoothness with which the shock wave crosses the zonal 

(It should be noted, 

Downstream in the wake where the fine viscous grid interfaces with a 
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is due to the difference in grid refinement (in going from the wing grid to 

the fine, but not clustered, grid 2 ) .  The power of the zonal scheme allows 

the addition of more zones in those regions where large gradient flow is 

observed. 

of the wing to capture the important viscous wake effects. 

In the wing-fuselage case, a special zone is implemented downstream 

The convergence rate of the diagonal version versus the block AD1 version 

is illustrated in Fig. 11. The time-step used in the nondiagonal version 

was 

taining stability of the code. 

(as described previously). 

time-step solution and a variable time-step solution, the main speedup in the 

diagonal algorithm is not in the variable time-stepping procedure, but in the 

proper linearization of the dissipation terms [26]. The slow rate of conver- 

gence in the nondiagonal version seems to occur in the outer inviscid zones. 

The residual in the viscous zones in the first thousand iterations drops 

fairly fast, then begins to flatten out. In 5,000 iterations, all zones have 

dropped about two orders of magnitude in the L2 norm of the residual. In 

contrast, the convergence rate of the diagonal version drops rapidly in all 

the zones. A three-order-of-magnitude drop in the L2 norm occurs in about 

400-500 iterations. 

arithmetic operation count caused by the diagonal algorithm) increases the 

speed with which solutions are obtained by a factor of 40. 

gence rate, as stated before, is due to the proper linearization of the 

fourth-order-explicit dissipation operator. This rate was possible in the 

nondiagonal version, but would involve inverting block pentadiagonals, which 

would substantially increase the computational cost. More time was required 

At = 0.004, which was the largest time-step possible while still main- 

The diagonal version used a variable time-step 

Even though the comparison is between a fixed 

This convergence rate (coupled with the decrease in 

The faster conver- 
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for the same case when wind-tunnel walls were modeled, since a stronger shock 

occurs. 

We can also look at the development of lift and the number of supersonic 

points (NSP) to study the convergence characteristics. Figure 12 shows the 

evolution where the x-axis is the number of iterations; the y-axis is left 

unlabeled (since the actual values were not of significance, but the overall 

trend in the approach to the steady state is important). The NSP overshoots 

the final converged solutions at about 100 iterations, but then quickly 

approaches the converged solution. 

of the converged solution, and at 300 iterations it is within 1%. 

also overshoots the final converged value, but at 200 iterations it is within 

about 4% of the final solution, and at 300 iterations it is within 1%. If, 

instead of a three-order-of-magnitude drop in residual, convergence is based 

on 95% of the converged lift, then a solution can be generated in about 

200 iterations, or about 18 min of cpu time for this fine-grid calculation. 

At about 200 iterations, it is within 7% 

The lift 

The next case presented consists of a massive, shock-induced, boundary- 

layer separation. This case was computed to ascertain the degree of robust- 

ness of the present algorithm and, in particular, the ability of the present 

zonal interface scheme to cope with large flow gradients. The geometry used 

is the same as that of the last case. The free-stream Mach number and angle 

of attack have been arbitrarily chosen to be 0.9 and 5", respectively. 

zation of the wind-tunnel-wall boundaries produced a ttchokedt' solution with a 

shock wave spanning the tunnel. 

ately converged calculation, the solution diverged as expected. This result 

was a consequence of the "fixed" upstream boundary conditions forcing more 

mass flow through the tunnel than the choked condition would allow. 

Utili- 

After several hundred iterations and a moder- 
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The solution was repeated with free-air boundary conditions, and then 

convergence was easily achieved. 

surface are displayed in Fig. 13. 

wing surface is separated. The solution contains several interesting fea- 

tures, including-a separation saddle point, a focus, a reattachment saddle 

point, and a node. 

sequence of critical points on the separation line; that is, a node followed 

by a saddle point and then a focus. 

time . 

Computed particle paths on the upper wing 

Note that approximately half of the upper 

, _  

Note also that this computed solution has a stable 

This case required about 2.8 hr of cpu 

Two different perspective views of the three-dimensional particle paths 

Figure 14a shows a view from outboard of the wingtip, are shown in Fig. 14. 

and Fig. 14b shows a view from behind and above the wing. The height and 

three dimensionality of the separation zone are apparent in these figures. 

The dashed particle paths move along the wing surface until the separation 

line is encountered; then they are deflected up and over the separation 

bubble, with a few of the dashed paths captured by the primary swirling flow 

at the center of the wing. 

involved with the two swirling pockets of flow, and they essentially define 

these regions. 

The solid particle paths are more intimately 

The position of the separation region relative to the zonal interface 

boundary is best displayed by plotting particle paths constrained to lie in 

spanwise cross-sectional planes. 

Figure 15a shows cross-sectional particle paths for a semispan station of 

2y/b = 0.66. The separation region is large and easily extends above the 

zonal boundary from the Navier-Stokes region into the Euler region. 

less, the solution looks qualitatively reasonable. An enlargement of the 

separated portion of the solution is shown in Fig. 15b. 

Two such plots are displayed in Fig. 15. 

Neverthe- 

From this figure it 
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can be seen that the particle paths pass smoothly across the interface bound- 

ary with no f’unction or slope discontinuities. 

doing this calculation was achieved. 

gradient across the explicitly updated interface boundary, the present 

approach is capable of predicting a stable solution that is reasonably free 

from interface boundary influence. 

Thus, the primary objective of 

Despite the existence of a strong shear 

Figure 16 shows Mach number contours for this difficult transonic case at 

a semispan station of 

upper surface of the wing, as well as its smooth transition to the other 

zones. 

region. 

2y/b = 0.33. A very strong shock can be seen on the 

The wake region is larger because of the shock induced separation 

For more details on the zonal procedure, convergence studies, transonic 

results with different wings, and data management structure, the reader is 

referred to [ 13,19,20]. 

The zonal grid topology described in the previous section utilizes 

Cartesian-like grids t o  simplify the zonal interfacing and to maintain flow 

conservation at shocks. One drawback to this approach, however, is the 

resulting Hd-mesh singularity at the wing leading edge. This occurs at the 

interface between blocks 3 and 4, as shown in Fig. 17. It is important to be 

able to properly treat severe coordinate singularities because they naturally 

arise in realistic aircraft configurations. 

Some of the early computations with the TNS code were performed at low to 

moderate angles of attack and used simple central differencing of the met- 

rics. 

culty at the wing leading edge. 

and insure uniform flow as an exact solution of the finite-difference equa- 

tions, the free-stream residual was subtracted from the right side of ( 1 ) .  

For these relatively simple test cases, there appeared to be no diffi- 

In order to control metric truncation errors 
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However, for M,,, = 0.5 and a = l o o ,  large oscillations in the flow variables 

developed at the H-mesh singularity, as indicated by the wing root section 

Mach number contours given in Fig. 18. It was not possible to obtain a fully 

converged solution. A nominal two-order-of-magnitude drop in the L2 norm of 

the residual was possible only after adding large amounts of numerical 

dissipation near the leading edge. 

prevent high-angle-of-attack simulations. 

free-stream preserving metrics as described by Pulliam and Steger [27]. 

This was clarly unacceptable and would 

This problem was fixed by using 

In their work, Pulliam and Steger used special numerical metrics that 

insured uniform flow was: 

equation; or (2) the free-stream subtraction described above. In the cases 

treated in [27], Pulliam and Steger found no appreciable difference between 

the two solutions or in their convergence rates, and therefore preferred the 

latter approach. 

possess severe coordinate singularities such as are present in the H-type. 

Once the free-stream preserving metrics were implemented in the TNS code, 

there was no difficulty in rapidly converging to a steady state, and no addi- 

tional dissipation was necessary at the leading edge. (For more details into 

the theory of the free-stream preserving metrics, see [7].) The resulting, 

improved, Mach-number contours are shown in Figs. 19 and 20. There is a 

nominal amount of distortion at the interface of blocks 3 and 4 because the 

flow variables are obtained there using simple averages instead of from the 

governing equations. The L2 norm of the residuals for all four blocks are 

shown in Fig. 21. A three-order-of-magnitude drop in the residuals of all 

four blocks was obtained in 700 iterations. This criterion for convergence is 

usually sufficient for plottable accuracy. 

( 1 )  an exact solution of the finite-difference 

However, their grids were relatively smooth and did not 
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The first set of solutions was obtained at a free-stream Mach number 

M- = 0.5. 

obtained with a method based on the full-potential equations [la] is shown in 
Figs. 22 and 23. Unfortunately, good-quality force, moment, and surface- 

pressure data, up through maximum lift, are lacking in the literature. 

Although force and moment data provide a way to assess a code's global accu- 

racy, extensive surface-pressure data are necessary for validating the details 

of the flow simulation. These flow simulations indicate that the flow is 

subcritical owing to the effects of three-dimensional relief and wing sweep. 

Sonic flow is achieved only at maximum lift (a = 13.5"). The lift coefficient 

obtained with the TNS code is in good agreement with the full-potential result 

in the low-angle-of-attack range, but differs significantly in the high-angle- 

of-attack range. The TNS code predicts maximum lift at a = 13.5", whereas 

the full-potential lift coefficient continues in a linear fashion. 

coefficient exhibits the usual quadratic variation with angle of attack 

(CD - CL - a ) together with the large drag rise at stall. 

tion usually requires 700 iterations, or 55 min of Cray X-MP time. 

A comparison between TNS lift and drag coefficients and those 

The drag 

2 2  A converged solu- 

Particle trajectories for a = 15O are shown in Figs. 24 and 25. 

Figure 24 is a perspective view from above the wing and looking downstream 

toward the wing leading edge. 

leading edge and wing tip. 

a-induced separation, that is, separation caused solely by angle of attack, as 

apposed to shock-induced separation. 

region is evident. The particle trajectories emanating from the wing tip 

indicate a wing-tip vortex. Figure 25 is an end view of the wing looking 

inboard from the wing tip. The region of separation extends across zonal 

boundaries in a smooth manner. This solution seems to be on the verge of 

The particles are released along the wing 

This massively separated steady flow exhibits 

The vortical structure of the separated 
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going unsteady, and it required twice as many iterations to achieve conver- 

gence. 

constant time-step was used, a cyclic variation in the residuals was noted. 

The spatially varying time-step tends to inhibit unsteadiness. When a 

All of these solutions were obtained with little difficulty, provided 

consistent metrics were used. Without these special free-stream-preserving 

metrics, solutions at angles of attack greater than 5" would not converge. 

These high-angle-of-attack solutions also demonstrate the robustness of the 

zonal approach. 

Transonic wing solutions were also obtained for Mm = 0.8. The TNS 

vaiation is compared with the previous subcritical case in Fig. 26. CL vs a 

In this transonic flow, maximum lift occurs at a much lower angle of attack 

(a = 6O), a result of shock-induced separation. 

were relatively easy to obtain, requiring 50 min per solution. 

These transonic solutions 

The wing-tip vortex for the maximum lift condition, a = 6", is shown in 

A very interesting simulated oil-flow pattern on the upper surface Fig. 27. 

of the wing is shown in Fig. 28. 

to the next coordinate surface above the wing (because of the no-slip condi- 

tion on the wing). 

upper surface of the wing. 

configuration as defined in [34] .  

over most of the wing span, and it is followed by a reattachment line (shown 

by a dashed line) a short distance downstream. 

region is also evident near the trailing edge in the vicinity of the wing tip. 

These are particle trajectories constrained 

Notice the saddle and nodal point singularities on the 

These critical points form a stable topological 

There is a major separation line extending 

A second small separation 

The extent of separation in these subcritical and transonic cases tends 

to be underpredicted. This was also evident for the initial test case in 

which comparisons were made between simulated and experimental surface oil- 

flow patterns. There are several reasons for this discrepancy. First, better 
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grid resolution is probably required to improve the accuracy of the computa- 

tion. 

Cray 2 are in progress. Second, an improved numerical dissipation model is 

required. 

described by Pulliam [26]. 

capturing chearacteristics on a grid suitable for the Euler equations. 

ever, the dissipation coefficient varies as 

needed for viscous computations the numerical dissipation can be as large as 

the physical dissipation. 

is required that can adequately model three-dimensional shock-induced separa- 

tion. The first two points will be easily achievable in the near future, but 

the latter still remains uncertain. 

Grid-refinement studies using a million-point wing grid on the Ames 

Blended fourth-order and second-order smoothing is used in (1) as 

This blended smoothing has very good shock- 

How- 

O(l/Az) and, on fine-spaced grids 

Finally, an improved and efficient turbulence model 

~ 

4.2 TNS wing-fuselage code. As previously mentioned, one of the advan- 

tages of the zonal method is the ability to create grids, about complicated 

aircraft, with sufficient clustering of points on all no-slip surfaces. 

Figure 29 shows body-conforming zonal grids of a fighter aircraft configura- 

tion in the physical and computational spaces. 

grid that is used by the zoner code to create the different zones about this 

modified F-16A aircraft. 

generating technique [32]. 

the fuselage can be seen. 

front of the fuselage nose but, because of the averaging about this singular- 

ity, there is no problem in the flow solver. 

wing would reveal an H-mesh-type of local topology. 

seen in Fig. 31, illustrating the exclusion of the tail assembly. From 

Figs. 31a and 31b, it can be noted that the forebody, canopy, leading-edge 

Figure 30 illustrates the base 

This grid was generated via an elliptic grid- 

From this figure the polar type of topology about 

This polar grid collapses into a singular line in 

A chordwise slice through the 

The modified F-16A can be 
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strake,  wing, and shelf  regions a r e  unmodified and are o f  t h e  exact geometry 

of t h e  F-16A. The i n l e t  is faired over.  Figure 32 shows a planform view of 

t h e  base g r i d .  Generating even a base g r i d  w i t h  no c l u s t e r i n g  normal t o  t h e  

s u r f a c e s  is d i f f i c u l t .  

t a i l  is n o t  computed here), t he  gr id  l i n e s  tend t o  squeeze toge ther  a t  t h e  

lead ing  edge near t h e  t i p  region,  then suddenly s t re tch  o u t  as they  cont inue  

t o  t he  o u t e r  boundary. 

Because of t h e  taper ing  of the  wing ( t h e  h o r i z o n t a l  

The base g r i d  is fed i n t o  a zonal r o u t i n e ,  which then subsequent ly  

creates 16 zones (by subdividing the o r i g i n a l  base g r i d ) .  

parameters i n  the  zonal  rou t ine ,  the zones created are e s s e n t i a l l y  o f  three 

types:  ( i )  inv i sc id  zones, (ii) viscous zones with c l u s t e r i n g  on one face o f  

t h e  zone for wing o r  fuse lage  sur faces ,  and (iii) viscous  zones wi th  cluster- 

ing on two adjacent  faces o f  t h e  zone f o r  t h e  wing-fuselage junc tu re .  

Figure 33 shows a schematic view of the  18 zones created f o r  the  F-16A. 

Zones 1 and 4 are on the  fuse l age  and are cons t ruc ted  with s u f f i c i e n t  g r i d  

r e s o l u t i o n  i n  the  normal d i r e c t i o n .  Zones 8 and 9 (zone 9 is n o t  v i s i b l e )  are 

on t h e  upper and lower wing, respec t ive ly ,  and also have s u f f i c i e n t  g r i d  

c l u s t e r i n g .  Zones 2 and 3 (zone 3 is n o t  v i s i b l e )  are s p e c i a l ,  i n  t h a t  they 

have c l u s t e r i n g  both normal to  the wing and normal to t h e  fuse l age  s u r f a c e s .  

This  is i n  o rde r  t o  capture  viscous effects caused by t h e  wing-fuselage junc- 

t u re .  Zones 12 and 13 are n o t  considered t o  be no-s l ip  s u r f a c e s ;  however, 

they are c l u s t e r e d  ac ross  the wing planform plane ,  i n  order t o  cap tu re  wake 

(zone 12) and t i p  (zone 13) e f f e c t s .  

t h e  fuse l age  and ac ross  the wing planform plane.  

p r i a t e  tu rbulence  model effects a r e  implemented for these zones and so lved  

wi th  t h e  th in- layer  Navier-Stokes equations.  

Through c e r t a i n  

Zone 6 is a l s o  c l u s t e r e d  both normal to  

(Viscous effects and appro- 

A l l  other zones are solved w i t h  
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the Euler equations.) 

modified F-16A. 

Results will be shown only for a 16-zone version of  the 

Figure 34 shows some of the different wing-fuselage mesh topologies. The 

topology chosen was that of Fig. 34a. 

fuselage juinction, and made it easier to implement the turbulence model. 

Figure 35 shows the clustering in the viscous zones. The viscous zone is 

based on the first three inviscid points of the body, NJC = 1-3. Then a 

single parameter, per block, determines the amount of clustering to be imple- 

mented. A different interpolation routine from that of the wing-alone code is 

required. Instead of simple one-dimensional interpolation [19 ] ,  two- 

dimensional interpolation is now required because of the interfacing of sur- 

faces. 

may be used to interpolate the surface onto a fine grid. 

It allowed for clustering in the wing- 

This can be seen in Fig. 36, where surface ABCD from a coarse zone, 

Pressure contours are displayed in Fig. 37 for flow conditions of 

Mm = 0.9, a = 1.69O, and a Reynolds number based on the chord of 4.5 mil- 

lion. The coalescing of contours indicates regions of high gradient flow. 

Stagnation flow occurs at the fuselage nose and at the forward base of the 

canopy. The flow then accelerates over the t op  of the canopy. At the leading 

edge of the wing, the flow accelerates and smoothly decelerates as it 

approaches the trailing edge. 

the upper wing zone into the fuselage zone. Similarly, the fuselage has two 

zones, the boundary occurring approximately at the base of the back of the 

canopy. 

Notice how the pressure contours continue from 

Pressure contours continue smoothly between these two zones. 

Mach contours are plotted in Fig. 38. These contours were calculated on 

planes that were about 15 grid points up from the surfaces, so as to be out of 

the boundary-layer region. The peak Mach number is about 1.2, and the con- 

tours on the wing indicate a weak shock, if any, occurring. 
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These calculations required about 2,500 iterations on a total grid size 

of about 300,000 points. 

X-MP-48. 

angles of attack, the reader is referred to [14,31]. 

This required about 10 hr of cpu time on the Cray 

For results from other transonic calculations, as well as at higher 

5. Conclusions. A fast diagonal algorithm has been successfully imple- 

mented within the framework of a zonal approach. Results indicate that the 

modified code (in obtaining a solution for a moderately difficult case) still 

maintains its fast convergence characteristics. This improvement is demon- 

strated by producing a three-dimensional, fine-grid Euler/Navier-Stokes wing 

solution in 45 min on the Cray X-MP, which is faster by a factor of 40 than 

the original code. 

with those of experiment. 

version for the The zonal procedure allows appro- 

priate grid clustering normal to all no-slip surfaces, and pressure contours 

continue smoothly across the different zones. 

10 hr of cpu time for 300,000 grid points. 

Computed pressures and oil-flow patterns compare favorably 

The wing code has been extended to a 16-block 

modified F-16A geometry. 

The calculations require about 
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FIGURE CAPTIONS 

FIG. 1. Zonal interface alternatives. 

FIG. 2. Global finite-difference grid showing wing-tunnel walls. 

FIG. 3. Expanded view of embedded grid near wing. 

FIG. 4 .  Perspective view of embedded grid with upper symmetry plane 

( y  = 0.0) and wing surface highlighted: ALE = 20", AR = 3.0, TR = 1.0. 

FIG. 5. Grid zone interface procedure: (a) two-zone grid arrangement 

showing overlap, (b) grid point detail in the overlap region ( 5  = A plane). 

FIG. 6. 

FIG. 7. Pressure coefficient comparisons: NACA 0012 airfoil section, 

Overlap between zones 2 and 3 removed for clarity. 

AR = 3.0, ALE = 20°, TR = 1.0, Mm = 0.826, a = 2", Re = 8 x 10 6 . 
FIG. 8. Computed particle paths on the upper wing surface: NACA 0012 

airfoil section, AR = 3.0, ALE = 20°, TR = 1.0, Mm = 0.826, a = 2O, 

Re = 8 x lo6. 
FIG. 9. Oil-flow pattern on upper wing surface: NACA 0012 airfoil 

section, AR = 3.0, ALE = 20", TR = 1.0, Mm = 0.826, a = 2O, Re = 8 x 10 6 (from 

P 3 1 ) .  

FIG. 10. Cross-sectional Mach-number contours: NACA 0012 airfoil sec- 

tion, AR = 3.0, ALE = 20°, TR = 1.0, M- = 0.826, a = 2", Re = 8 x lo6. 
FIG. 1 1 .  Convergence rate comparison. 

FIG. 12. Development of lift and number of supersonic points (NSP). 

FIG. 13. Computed particle paths on the upper wing surface: NACA 0012 

airfoil section, AR = 3.0, A L E  = 20°, TR = 1.0, Mm = 0.9, a = 5" ,  

Re = 8 x lo6. 
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FIG. 14. Computed three-dimensional particle paths on the upper wing 

surface: 

a = 5 O ,  Re = 8 x 10 6 : 

outboard of wing tip. 

NACA 0012 airfoil section, AR = 3.0, ALE = 20°, TR = 1.0, Mm = 0.9, 

(a) view from behind and above wing; (b) view from 

FIG. 15. Copmputed cross-sectional particle paths: NACA 0012 airfoil 

section, AR = 3.0, ALE = 20°, TR = 1.0, M, = 0.9, a = 5 O ,  Re = 8 x lo6: 
(a) 2y/b = 0.66; (b) 2y/b = 0.66, expanded view of separated flow region. 

FIG. 16. Cross-sectional Mach-number contours: NACA 0012 airfoil sec- 

tion, AR = 3.0, ALE = 20°, TR = 1.0, MIP = 0.9, a = 5", Re = 8  x 10. 6 

FIG. 17. H-mesh singularity at wing leading edge (blocks 3 and 4): 
NACA 0012, M, = 0.5, a = 10.Oo, Re = 8 x 10 6 . 

FIG. 18. Symmetry plane Mach-number contours with central-difference 

metrics: NACA 0012, M, = 0.5, a = 10.Oo,  Re = 8 x lo6. 
FIG. 19. Symmetry plane Mach-number contours with new metrics: 

NACA 0012, M, = 0.5, a = 10.Oo, Re = 8 x 10 6 . 
FIG. 20. Symmetry plane Mach-number contours with new metrics: 

NACA 0012, M, = 0.5, a = 10.Oo, Re = 8 x 10 6 . 
FIG. 21. L2 norm convergence history of residuals for all four blocks: 

M, = 0.5, a = 10.Oo, Re = 8 x 10 6 . 
FIG. 22. Lift coefficient comparison between TNS and full-potential 

code: NACA 0012, M, = 0 . 5 ,  Re = 8 x 10 6 . 
FIG. 23. Drag coefficient comparison between TNS and full-potential 

code: NACA 0012, M, = 0.5, Re = 8 x 10 6 . 
FIG. 24. Perspective view of particle trajectories over a stalled 

NACA 0012, M, = 0.5, a = 15.0°, Re = 8 x lo6 (view from above the wing, wing: 

looking downstream toward the wing leading edge). 

27 



FIG. 25. Particle trajectories over a stalled wing (view looking inboard 

from wing t i p ) :  NACA 0012, M, = 0.5, a = 15.0°, Re = 8 x 10 6 . 

FIG. 26. TNS lift coefficient comparison between subcritical (Mm = 0 .5 )  

and transonic (Mm = 0.8) cases: NACA 0012. 

FIG. 27. Particle trajectories of the wing-tip vortex at maximum lift: 

NACA 0012, Mm = 0.8, a = 6.0°, Re = 8 x lo6; the wing planform near the wing 
tip is shaded. 

FIG. 28. Numerical oil-flow pattern on upper wing surface: NACA 0012, 

Mm = 0.8, a = 6.0°, Re = 8 x 10 6 (N-node critical point, S-saddle critical 

point). 

FIG. 29. Body-conforming zonal grids of a fighter aircraft configuration 

in the physical and computational spaces. 

FIG. 30. Base grid generated by an elliptic method: 60 x 20 x 24 grid 

points. 

FIG. 31. View of surface grid for the modified F-16A: (a) view from 

above; (b) view from side. 

FIG. 32. Planform view of the base grid. 

FIG. 33. A schematic view of the zonal structure for the modified F-16A. 

FIG. 34. Different wing-fuselage mesh topologies: (a) polar topology; 

( b )  H-tOpolOgy 

FIG. 35. Grid clustering normal to no-slip surfaces: (a) coarse grid; 

(b) refined viscous grid. 

FIG. 36. Fine-coarse zone interface: (a) two-zone grid showing overlap 

at ABCD and EFCH planes in physical space; (b) grid point detail in the over- 

lap region in transformed space. 

FIG. 37. 

FIG. 38. Mach contours: 

Pressure contours: Mm = 0.9, a = 1.69", Re = 4.5 x 10 6 . 
Mm = 0.9, a = 1.6g0, Re = 4.5 x 10 6 . 
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